The increasing adoption of electric vehicles (EVs) within intelligent transportation systems (ITSs) has elevated the importance of cybersecurity, especially with the rise in Vehicle-to- Everything (V2X) communications. Traditional intrusion detection systems (IDSs) struggle to address the evolving and complex nature of cyberattacks in such dynamic environments. To address these challenges, this study introduces a novel deep learning-based IDS designed specifically for EV communication networks. We present a hybrid model that integrates convolutional neural networks (CNNs), long short-term memory (LSTM) layers, and adaptive learning strategies. The model was trained and validated using the VeReMi dataset, which simulates a wide range of attack scenarios in V2X networks. Additionally, an ablation study was conducted to isolate the contribution of each of its modules. The model demonstrated strong performance with 98.73% accuracy, 97.88% precision, 98.91% sensitivity, and 98.55% specificity, as well as an F1-score of 98.39%, an MCC of 0.964, a false-positive rate of 1.45%, and a false-negative rate of 1.09%, with a detection latency of 28 ms and an AUC-ROC of 0.994. Specifically, this work fills a clear gap in the existing V2X intrusion detection literature—namely, the lack of scalable, adaptive, and low-latency IDS solutions for hardware-constrained EV platforms—by proposing a hybrid CNN–LSTM architecture coupled with an elastic weight consolidation (EWC)-based adaptive learning module that enables online updates without full retraining. The proposed model provides a real-time, adaptive, and high-precision IDS for EV networks, supporting safer and more resilient ITS infrastructures.
Loading....